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We study the infinite system equilibrium states in the statistical mechanics of classical 
lattice gases. We show that breakdown of the translation invariance occurs if and only 
if the derivative dP(@ + hY)/dX is discontinuous at h = 0 for some Y. In this formula, 
P is the pressure, @ the translation invariant interaction of the system, and I a “small 
external field” from a suitable class of nontranslation invariant interactions. In an 
appendix we show that an Ising ferromagnet in a nonvanishing magnetic field has only 
one equilibrium state. 

The equilibrium states for an infinite system in statistical mechanics may be 
defined as the thermodynamic limits of finite system equilibrium states.l The latter 
are given by the grand canonical ensemble with various boundary conditions. If 
the interaction @ is translation invariant, there is at least one (translation) invariant 
equilibrium state, but there may be several (corresponding to several thermo- 
dynamic phases). Even if there is only one invariant equilibrium state (phase), 
there may be many equilibrium states, forming a convex set. Every equilibrium 
state p is the barycenter of a unique measure p carried by the extremal equilibrium 
states (,u gives the unique decomposition of p into pure equilibrium states). In 
particular, let there be a unique invariant state p (pure phase); if the support of 
the corresponding measure ~1 is not reduced to {p} we say that the translational 
invariance of the theory is broken. This symmetry breakdown implies that there 
exist nontranslationally invariant equilibrium states. On the other hand, it is not 
known if the absence of symmetry breakdown implies that there is only one equilib- 
rium state. It would be very interesting to have a proof, or a counterexample. 

* On leave of absence from Institut des Hautes Etudes Scientifiques, 91 Bures-sur-Yvette, 
France. 

t Research sponsored by the Alfred P. Sloan Foundation. 
1 For details see Dobrushin [2] and Lanford and Ruelle [8]. 
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The idea of much work on ferromagnets, antiferromagnets, superfluids, etc. . . . 
is that the breakdown of the translational symmetry can be detected by use of a 
small external field XY. Let P(@) be the thermodynamic pressure corresponding 
to the interaction @. It is expected that dP(@ + X?P)/dh is continuous in h at 
X = 0, for all Y of a suitable class, if and only if there is no symmetry breakdown, 
i.e., if and only if there is a unique invariant equilibrium state p which cannot be 
decomposed into noninvariant equilibrium states. 

In the present note we restrict our attention to the simple case of classical lattice 
gases. The external fields Y are nontranslationally invariant interactions such that 
P(@ + h!P) is well defined. To satisfy this last requirement we introduce a class SYA 
of averageable interactions !P which generalize the random interactions of Griffiths 
and Lebowitz [6]. Our main result is then Theorem 2 which expresses that the dif- 
ferentiability of P(@ + XY) at h = 0 for all averageable Y is equivalent to the 
absence of symmetry breakdown: the unique invariant equilibrium state p is an 
extremal equilibrium state. 

1. NOTATION 

We indicate here briefly the notation and results which will be used. 
If E is a set, 1 E 1 is the cardinal of E, P(E) is the set of subsets of E, B,(E) is 

the set of finite subsets of E. 
An interaction for a classical lattice gas (on a lattice 2”) is a function 

@: g,(Z”) + R such that @($) = 0. We restrict ourselves here to bounded inter- 
actions, for which 

/l@/l= c supI@>(X+4l <+a. 
x30 c&T” 

These interactions form a Banach space 9P containing as subspace g the translation 
invariant interactions. 

The topology of pointwise convergence of the characteristic functions makes 
9(Z”) into a compact set. We call 02 the abelian C*-algebra of complex continuous 
functions on this set. If II C Zy, we let 02* be the subalgebra of functions A such that 

A(X) = A(X n A). 

A state u is a probability measure on 9(D), or, equivalently, a positive linear 
form on GY such that u( 1) = 1. 

Let @ E gB. If X 6 Pf(Zv), we write 

~,W) = c @co sex 
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If, furthermore, Y C Zy and X n Y = 4, we let 

w&c Y> = c* @%9, 
SCXYY 

where C* extends to those S such that S A X # 4 and S n Y # 4. A state 0 is 
an equilibrium state with respect to @ if, for every (1 E .Pf(Zv), there exists a 
probability measure e’n on B(Zv/A) such that 

a(A) = S ‘Ady3 
L-CA 03 exp[-UoW - w&C YII 

Cxcn exp[-U,(X) - W&X Y)] (1) 
, 

for all A E 02* . The equations (I) are called equilibrium equations (see [2]). For 
every @ E 9’ there exists at least one equilibrium state. 

When x E Zy, XC Zy, we introduce the translated set X + X. If A E GZ, we define 
a translated function TJ by 

T,A(X) = A(X - x). 

Finally, if a = (a’,..., a”) and u1 ,..., a” are strictly positive integers, we let 

A(a) = (x E z”: 0 < 2 < ai> 

and write a + co for al,..., a* -+ co. 

2. AVERAGEABLE INTERACTIONS 

LEMMA. The ball B, = (0 E ~3~: j/ CD II < r} is compact with respect to the 
topology 9 of pointwise convergence (of functions P@‘) -+ R). 

In the space of all functions Pf(Zv) -+ R, B, is the intersection of the closed sets 

B x1.. ‘X, = @ : i 1 @(Xi)1 d r , 
I i=l I 

where (X1 ,..., X,) is any finite family of translates of sets &O,..., Xno, all distinct 
and containing 0. Furthermore, B, is contained in the compact set 

I.@: I @(-VI < r> 

product of one copy of the interval [-r, r] for each X E Pf(Zv). 

DEFINITION. Let @ E aB and I/ @ 11 < r. We say that 0 is averageable if, for 
every a with strictly positive integer components, 

;+&J I 4W1 C %~-n,@) (2) 
n&l(b) 
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exists in the vague topology of measures on B,(Y).2 We have used the notation 

T,@(X) = @(X - x), 

6(G) = unit mass at @, 

na = (nW,..., nw). 

THEOREM 1. (a) The set &$?A of averageable interactions is closed in ~33~ and 
invariant under translations of z”. If @ E 39, ?P E gA, and h E R, then di + hY E gA. 

(b) If Qi E J???~, the limit 

P(G) = !+I 1 A(a) log C exp[-U,(X)] 
xcnca, 

exists. P(e) is continuous, convex on BA, and translation invariant. More precisely, if 
@, Y E ~23~, then 

If, furthermore, 0 < 01 < 1, and a@ + (1 - a)??‘ E L2YA, then 

P(CX@ + (1 - ,)?P) < cLP(@) + (1 - a) P(‘y). 

Finally, if x E Zy, 

P(T$) = P(Q). 

The proof of (a) is immediate. To prove (b) we use the density of finite range 
interactions. We say that Y E aB has uniformly finite range if there exists d E P,(D) 
such that X - XC A whenever Y(X) # 0. Let 9’B,B be the space of these inter- 
actions. If YE QB and A E Pf(Zv), we let 

when X - X C A, 
otherwise. 

Then lim,,,, YA = Y, showing that &3,,” is dense in ~3~. If Y is averageable, one 
checks readily that YA is averageable, so that 9,,” = gA n BOB is dense in GJA. 
Let now 

PA(@) = I A 1-l log 1 exp[-U,(X)]. 
XL4 

2 More explicitly, (2) means that for every continuous (complex) function f‘ on B,(F) the 
following limit exists: 

lim 1 A(b)l-l C f(7-&J). 
b-+02 nPn(a) 

It suffices to check the existence of this limit for sufficiently large a. 
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With the same arguments as for translation invariant interactions [9, Section 2.31, 
we find that if Cp E L%,,~, given E > 0 there exists a such that 

for all b. On the other hand, 

;+% I 4b>l-’ & Pm+naPl 

= $I I A(b)l-l c PA&T-~@) 
n&l(b) 

exists because @ is averageable. The proof of (b) proceeds then as in the case of 
translationally invariant interactions. 

Remarks. (a) In Theorem l(a) one can let n tend to infinity in a more general 
manner, provided the definition of averageable interactions is suitably modified. 

(b) If II -+ co on an ultrafilter, then, for all @ E JP, we may write 

lim P,(Q) = P(Q). 

With this definition, P is continuous, convex, and translation invariant, but non- 
unique. 

3. A CHARACTERIZATION OF SYMMETRY BREAKDOWN 

LEMMA. Given A E gY(E), we consider the projection piA: 9’(Z”) -+ Y(Zv\A) 
andfor any state q let qqn be the image of q~ by this projection: 

9J\n = P\nV 

Let Cp ESJ~. If we deJine 

P,.A@> = I (11-l s m&W log c exp[-udx) - w&K VI, 
XCA 

we have 
lim P,,dQ9 = P(@> a+m (3) 

and, if g, is an equilibrium state for the interaction @, 

(4) 

where Y E SC4 and UY,,(X) = U,(X IT A). 
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Part (3) follows from standard estimates; (4) follows from the equilibrium 
equations and the relation 

THEOREM 2. Let @ E 9. The following conditions are equivalent. 

(a) There is only one translation invariant equilibrium state p, and it is an 
extremal equilibrium state. 

(b) If p is an invariant equilibrium state, 0 any equilibrium state, and 
A = A* ~02, then 

uniformly in 0. 

(c) For each !P E .c%~ (or ‘P E goA), the function X + P(@ + XY) is d@eren- 
tiable at zero. 

First, we assume (a), and prove (b). Define o[A] as an average over translations 

a[A](A) = I II 1-l c u(~rA). 
xe‘l 

We claim that 

In the opposite case there would exist a limit point u* of the u[A(a)] such that 
u*(A) f p(A), and u* is an equilibrium state invariant under translations, against 
the assumptions. Let A’(a) = {x E A(a): u(T,A) > p(A)} and A”(u) = Ja)\n’(u). 
If u[A’(a)], u[A”(u)], 1 cl’(a)l/j A(a)1 tend to u’*, u”*, A, we have, by (6), 

ho’* + (1 - A) un* = p. 

If (5) did not hold uniformly with respect to u, we could arrange that 

I 4.W c [4~,4 - p@)Y -+ C > 0, 
sGn(o) 
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and therefore, 

w*w - Pm - (1 - w+*w - P(41 
= lim I 441-1 C I u(TJA) - PMI >, C/2 II A II > 0 

ssA(a) 

in contradiction with the extremality of p. 
To show that (b) implies (c), we let (X,) be chosen such that h, + 0, and the 

function A + P(@ + hY) is differentiable at X, . Also let uk be an equilibrium state 
for each interaction @ + h&P. Assuming (b), we prove the differentiability of 
P(@ + XP) at h = 0 by showing that the derivative at h, has a unique limit when 
k + co. This results from the following relations 

= $+% I 4w %W,Ad, (7) 

$+% &t I 4w %(U~.Ad = l& I 441-1 P(~Yf,Aca,). (8) 

Equation (7) follows from (4). It remains thus to prove (8) and, by density, it 
&ices to do this for YE a,/. 

Given YE ~23~” and E > 0, it follows from (b) that a exists such that 

I 4w1 I “m,n(a)+na) - PwQl(a)+na)l < 6 (9) 

for all n E Zv and all equilibrium states u. We may also assume that, for all b, 

For (1 sticiently large, d 3 /I(u), the function 

A-+ 
(C XCA 

e-vmLr)-wdx,Y))-’ c A(X) e-v@ti)-w~(x.Y) 

xcn 

on %W is arbitrarily close to the restriction of some equilibrium state to aA,,, , 
uniformly in Y C Zv\fl. Inserting this in (9) gives 

where Ekn is any probability measure on B(z’\Ql + nu)). In this relation, we 
replace the interaction @ in the exponentials by @ + h,Y. For sufficiently large k 
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this causes little change. Taking then 6’lcn = p,cn+na, uti and applying the equilibrium 
equations gives 

I 4w I 4~P,A(a~+na) - P(~,*/lca,+,a)l < 36 

Finally, using (10) we find 

and hence 

which proves (8), and therefore (b) 3 (c). 
We prove (c) * (a) by assuming that (a) does not hold and showing that, for 

suitable YE a,,“, the function X + P(@ + AY) is not differentiable at zero. If 
there are more than one translation invariant equilibrium states, this can be 
achieved with YE g[9]. If there is only one invariant equilibrium state p, let pP 
be the unique measure with resultant p carried by the extremal equilibrium states 
[S]. If A E 02 we let a be the function on states defined by d(a) = o(A). By 
assumption pP is not carried by {p}, and we can choose A = A* such that 
p&AZ) # ~(4)~. We may also suppose that A E aAtaj for some a, and that 
A(@) = 0. For PO-almost all cr we have 

(11) 

Let Y,JX) vanish unless X is contained in a translate A(u) + na of A(a), and let 

for all XC A(a) + na. This defines Y,, unambiguously and we note that, by the 
pointwise ergodic theorem, Y,, is averageable for p.,-almost all u. We fix now u 
such that Y = Y, E JS?,,~ and (11) holds. Inserting (12) into (4) we get 

In particular for q~ = p the r.h.s. is ,J(A)~, for v = u it is pP(a2), and, since these 
are different, (3) shows that X + P(@ + X?P) is not differentiable at zero. 



372 RUELLE 

Remark. One can use Theorem 2 to prove that there is no breakdown of trans- 
lational invariance in an Ising ferromagnet when the magnetic field is different 
from zero. In this case one can, however, show that there is only one equilibrium 
state. The proof of this stronger result is presented in the Appendix. 

APPENDIX 

THEOREM. Let @ be a pair interaction on z”: Q(X) = 0 for J X ] > 2, 
@(ix, Y>> = r&J@ - Y), @({x>> = -pp. If 9 G 0 and 

then there is only one equilibrium state associated with the interaction @. (In the 
equivalent language of spin systems we may say that an Ising ferromagnet has only 
one equilibrium state when the magnetic field is dyerent from zero.) 

First we prove some lemmas. 

LEMMA 1. Let A be a finite subset of Zy. We denote by pn+, pn-, and pn the 
correlation functions of a system contained in A with the following boundary condi- 
tions: all the points of =\A are occupied (p*+), or all the points of Z$4 are empty 
(pn-), or some are occupied and some are empty (p*). Then, if X C A C A’, 

PA-(x) < PAW) < p/l’(X) C-42) 

PA-(m G PiGn pf;oo G PA’(X). (-43) 

If Y is the set of occupied points in ZV\A, we have 

p*(x) = Lxc~c~~~;~~-w-~yl 
3 

= lim CS:XCSCn expC-- U(S u (Y n M))] 
kftrn Cscn exp[-U(S u (Y n M)) . 

LetnowEy(T)= I Tn YI - I T\Y[,then 

PLd(X) = = 
s.~~s~~ CTc.m expl-US u r> + A~071 

. 
&cn CTCM\A exP[--U@ u Tf b(T)] * 
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A theorem by Fortuin, Ginibre and Kasteleyn [3], extending a theorem by Griffiths,3 
asserts that the correlation function for a lattice gas with negative pair interaction 
depends monotonically on the chemical potential at each 1 ittice point. Therefore, 

PLW) G PL4AGu G Pz4dX) 

P%WA(X) G P%%&), P%4m < P%fAW> 

and the lemma follows by letting X + + 00, A4 ---f 00. 

LEMMA 2. When (1--t 00, p,+(X) and p,-(X) tend to limits p+(X) and p-(X) 
dejining translation invariant equilibrium states p+ and p-. If p+ = p-, then 

g~P/l(m = P'(X) = P-m. 644) 

The existence of the limits follows from the monotonicity (A3). Uniqueness of 
the limits implies their translation invariance. Finally, if pf = p-, (A2) implies (A4). 

LEMMA 3. If (Al) holds there exists only one translation invariant equilibrium 
state for the interaction CD. 

It suffices to prove that the graph of the pressure P has a unique tangent plane at 
(@, WY) (see [U or that the function h + P(@ + XY) is differentiable at X = 0 
for all translationally invariant interactions Y with finite range. We have 

where 

P(@ + AU) = li+i I A 1-1 log Q(z), 

G”(z) = C zlx’ exp [i B C C 90 - Y> - h C Y(r)], 
XC‘4 SEX YEA\X YCX 

z = exp [B (CL - k C dx))]. 
XfO 

Using the method of [IO]* it is seen that, given E > 0, there exists 6 > 0 such that if 
I X 1 < 6 (h complex), then z/1” does not vanish in the region {z E C: 11 z 1 - 1 1 < E}. 
Therefore, for real z # I, P(@ + hY) is analytic in h at h = 0 and the lemma is 
proved. 

Proof of the Theorem. Since (Al) holds by assumption, Lemma 3 shows that 

3 See Griffiths [5], Kelly and Sherman [7], Ginibre [4]. 
4 Based on an idea of Asano [I]. 
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there is only one translation invariant equilibrium state p. In particular we have 
p+ = p- = p, and Lemma 2 gives 

independently of boundary conditions. Therefore, there is only one equilibrium 
state. 

Remark. Also for p = $&,, v(x), the presence of a unique invariant equi- 
librium state implies that there is only one equilibrium state. This situation prevails 
for small j3 (large temperature), 
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